Characterization, localization and functional analysis of Gpr1p, a protein affecting sensitivity to acetic acid in the yeast Yarrowia lipolytica.
نویسندگان
چکیده
Adaptation of cells to acetic acid requires a hitherto unknown number of proteins. Studies on the GPR1 gene and its encoded protein in the ascomycetous fungus Yarrowia lipolytica have revealed an involvement of this protein in the molecular processes of adaptation to acetic acid. Gpr1p belongs to a novel family of conserved proteins in prokaryotic and eukaryotic organisms that is characterized by the two motifs (A/G)NPAPLGL and SYG(X)FW (GPR1_FUN34_YaaH protein family). Analysis of four trans-dominant mutations and N-terminal deletion analysis of Gpr1p identified the amino acid sequence FGGTLN important for function of this protein in Y. lipolytica. Deletion of GPR1 slowed down adaptation to acetic acid, but had no effect on growth in the presence of acetic acid. Expression of GPR1 is induced by acetic acid and moderately repressed by glucose. It was shown by subcellular fractionation that Gpr1p is an integral membrane protein, which is also suggested by the presence of five to six putative transmembrane spanning regions. Fluorescence microscopy confirmed a localization to the plasma membrane. A model is presented describing a hypothetical function of Gpr1p during adaptation to acetic acid.
منابع مشابه
Characterization of the Yarrowia lipolytica YlSRP72 gene, a component of the yeast signal recognition particle.
The Yarrowia lipolytica SRP72 gene product (YlSRP72), a homolog of the 72-kDa subunit of the mammalian SRP, encodes a putative protein of 602 amino acids. Northern blot analysis revealed a unique YlSRP72-specific transcript of 1.8 kb. The deduced amino acid sequence showed higher identities with the Srp72 proteins of euascomycetes than with hemiascomycetes. Chromosomal hybridization experiments...
متن کاملAdy2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae.
To identify new genes involved in acetate uptake in Saccharomyces cerevisiae, an analysis of the gene expression profiles of cells shifted from glucose to acetic acid was performed. The gene expression reprogramming of yeast adapting to a poor non-fermentable carbon source was observed, including dramatic metabolic changes, global activation of translation machinery, mitochondria biogenesis and...
متن کاملMetabolic Flexibility of Yarrowia lipolytica Growing on Glycerol
The yeast Yarrowia lipolytica is a fascinating microorganism with an amazing metabolic flexibility. This yeast grows very well on a wide variety of carbon sources from alkanes over lipids, to sugars and glycerol. Y. lipolytica accumulates a wide array of industrially relevant metabolites. It is very tolerant to many environmental factors, above all the pH value. It grows perfectly well over a w...
متن کاملYarrowia lipolytica in Biotechnological Applications
The nonconventional yeast Yarrowia lipolytica has been developed as a versatile and attractive tool for a large variety of biotechnological applications. This yeast has several physiological properties with industrial significance. Y. lipolytica uses hydrophobic substrates such as n-alkanes, oils, fats, and fatty acids as low-cost carbon sources. The yeast is able to produce a set of diverse ad...
متن کاملAlternative Splicing Regulates Targeting of Malate Dehydrogenase in Yarrowia lipolytica
Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 149 Pt 3 شماره
صفحات -
تاریخ انتشار 2003